Development of an Indicator Approach to Assessing Bioenergy Sustainability

Esther S. Parish (parishes@ornl.gov)

Research Staff Environmental Sciences Division Oak Ridge National Laboratory (ORNL) Oak Ridge, Tennessee

FEWSTERN Workshop

US-China Joint Symposium on the Nexus of Food, Energy, and Water Systems Franklin/Nashville, Tennessee December 7, 2017

ORNL is managed by UT-Battelle for the US Department of Energy

This presentation does not contain any proprietary, confidential, or otherwise restricted information.

ational Laboratory

ORNL's Bioenergy Sustainability Research for the US Department of Energy (DOE)

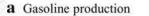
'Sustainability' is the capacity of an activity to continue while maintaining options for future generations

ORNL's research agenda includes

- Defining environmental & socioeconomic cost and benefits of bioenergy systems
- Quantifying opportunities & risk associated with sustainable bioenergy and specific context.
- Communicating the challenges & paths forward for sustainable bioenergy to a range of stakeholders
- Deploying approach in case studies & thereby refining approach

Key challenges

- Scientific consensus on definition of sustainability
- Quantitative & consistent way to implementing indicators & methodology for evaluating & improving sustainability



Sustainability

Economy

Environment

Society

,000,000

100,000

10,000

1000

100

10

4. Produce

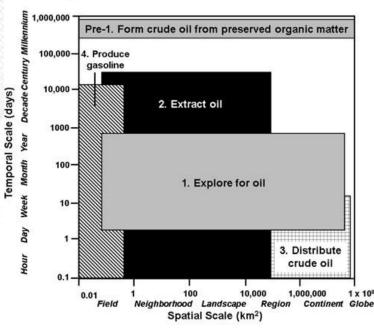
gasoline

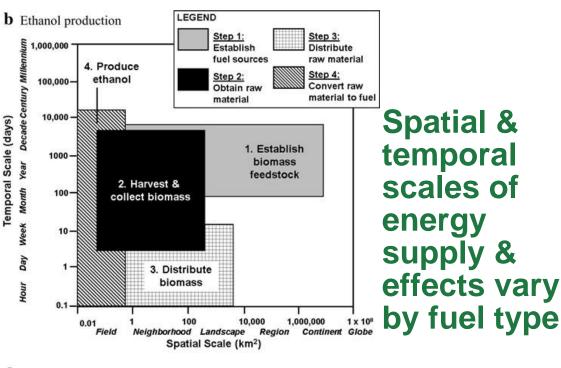
0.01

Field

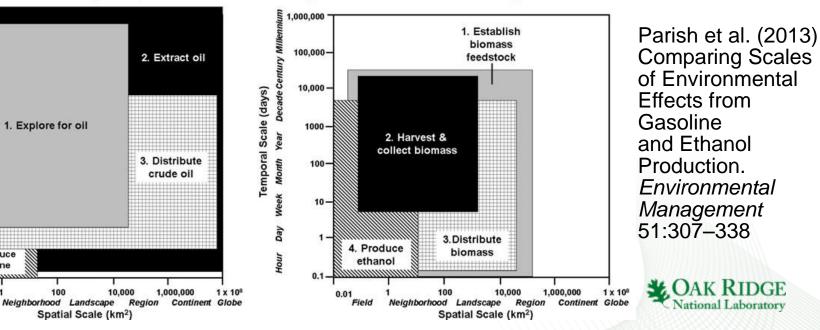
Decade Century

Year

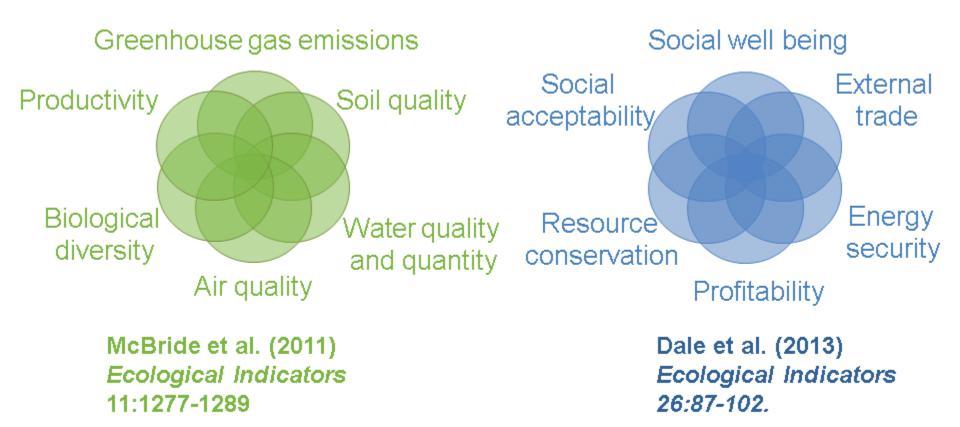

Month


Week

Day


Hour

Temporal Scale (days)


d Anticipated environmental effects of ethanol production

c Environmental effects associated with gasoline production

ORNL's Bioenergy Sustainability Indicators

(35 indicators in 12 categories)

Recognize that measures and interpretations are context-specific

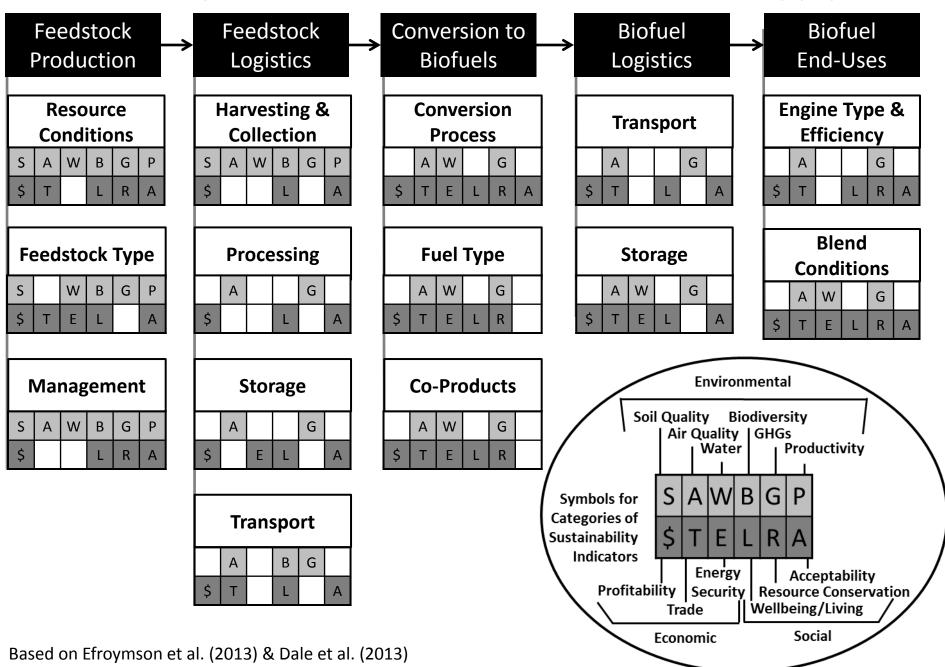
Efroymson et al. (2013) Environmental Management 51:291-306.

Categories of environmental sustainability indicators

Environment	Indicator	Units
Soil quality	1. Total organic carbon (TOC)	Mg/ha
	2. Total nitrogen (N)	Mg/ha
	3. Extractable phosphorus (P)	Mg/ha
	4. Bulk density	g/cm ³
Water quality and quantity	5. Nitrate concentration in streams (and export)	concentration: mg/L; export: kg/ha/yr
	6. Total phosphorus (P) concentration in streams (and export)	concentration: mg/L; export: kg/ha/yr
	7. Suspended sediment concentration in streams (and export)	concentration: mg/L; export: kg/ha/yr
	8. Herbicide concentration in streams (and export)	concentration: mg/L; export: kg/ha/yr
	9. storm flow	L/s
	10. Minimum base flow	L/s
	11. Consumptive water use (incorporates base flow)	feedstock production: m³/ha/day; biorefinery: m³/day

McBride et al. (2011) *Ecological Indicators* 11:1277-1289

Environment	Indicator	Units
Greenhouse gases	12. CO_2 equivalent emissions (CO_2 and N_2O)	kgC _{eq} /GJ
Biodiversity	13. Presence of taxa of special concern	Presence
	14. Habitat area of taxa of special concern	ha
Air quality	15. Tropospheric ozone	ррb
	16. Carbon monoxide	ppm
	17. Total particulate matter less than 2.5µm diameter (PM _{2.5})	µg/m³
	18. Total particulate matter less than 10µm diameter (PM ₁₀)	µg/m³
Productivity	19. Aboveground net primary productivity (ANPP) / Yield	gC/m²/year

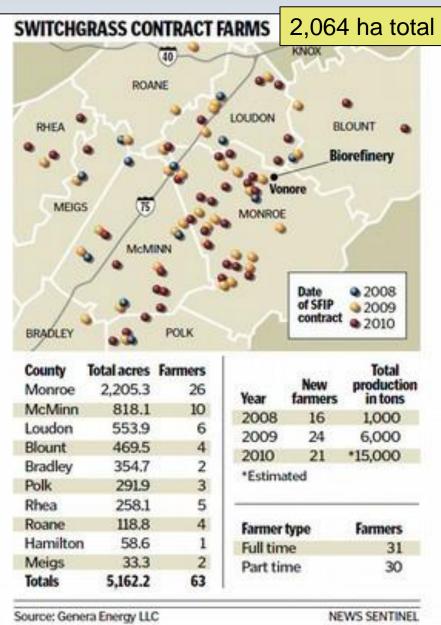


Categories of socioeconomic sustainability indicators

Ten minimum practical measures

Category	Indicator	Units	Category	Indicator	Units
Social well-	Employment	Number of full time equivalent (FTE) jobs	_	Depletion of	
	Household income	Dollars per day	Resource conservation	Depletion of MT (amount of petro non- extracted per year) renewable	MT (amount of petroleum extracted per year)
	Work days lost due to injury	Average number of work days lost per worker per		energy resources Fossil Energy	y MJ (ratio of amount of
	Food security	year Percent change in food price volatility		Return on Investment (fossil EROI)	fossil energy inputs to amount of useful energy outputt
Energy security	Energy security premium	Dollars /gallon biofuel	Social acceptability	Public opinion	Percent favorable
	Fuel price volatility	Standard deviation of monthly percentage price changes over one year		Transparency	Percent of indicators for which timely and relevant performance data are reported
External trade	Terms of trade	Ratio (price of exports/price of imports)		Effective stakeholder participation	Number of documented responses to stakeholder concerns and suggestions reported on an annual basis
	Trade volume	Dollars (net exports or balance of payments)			
Profitability	Return on investment (ROI)	Percent (net investment/ initial investment)		Risk of catastrophe	Annual probability of catastrophic event
	Net present value (NPV) ²	Dollars (present value of benefits minus present value of costs)	Dale et al. (2013) <i>Ecological Indicators</i> 26:87-102.		

Sustainability Indicator relevance across Biofuel Supply Chain



First case study: Switchgrass in east TN

- Dale et al. (2011) Ecological Applications 21(4):1039-1054.
- Parish et al. (2012) Bioprod. Bioref. 6(1):58-72.
- Parish (2016) Auburn Speaks: On Biofuels in the Southeast
- Parish et al.(2016) Ecosphere 7(2):1-18.

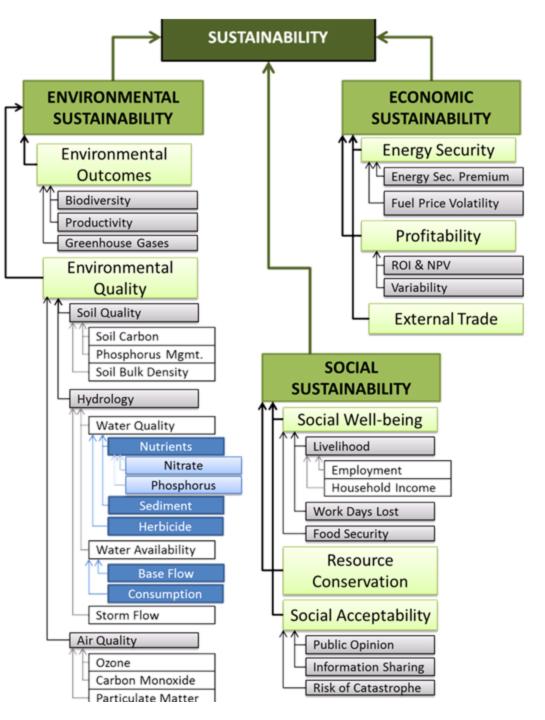
5-year Vonore, Tennessee switchgrass-to-ethanol experiment

Demonstration-scale cellulosic biorefinery (250Mgal/yr) + Switchgrass from 10 counties Photos from Genera Energy LLC

Vonore was previously the focus area for BLOSM modeling study of potential sustainability tradeoffs at a watershed scale

Research Question: Which crop configuration maximizes sustainability objectives while achieving target production? Profit

Nitrogen ↓ Phosphorus ↓ Sediment ↓


Schematic based on Parish et al. (2012) Multimetric Spatial Optimization of Switchgrass Plantings Across a Watershed. *Biofuels, Bioproducts & Biorefining* 6(1):58-72

Case Study goals:

- Collect data for as many of the 35 recommended ORNL bioenergy sustainability indicators as possible
- Appropriately
 aggregate them
 within a framework
 that can be adjusted
 according to
 stakeholder priorities.

Parish, ES, VH Dale, BE English, S Jackson, and D Tyler (2016) Assessing multimetric aspects of sustainability: Application to a bioenergy crop production system in East Tennessee. *Ecosphere7(2):1-18*

We combined <u>data</u> gathered from the Vonore switchgrass experiment with <u>modeling results</u>, <u>literature values</u> & <u>expert opinion</u> using a modified Delphi process.

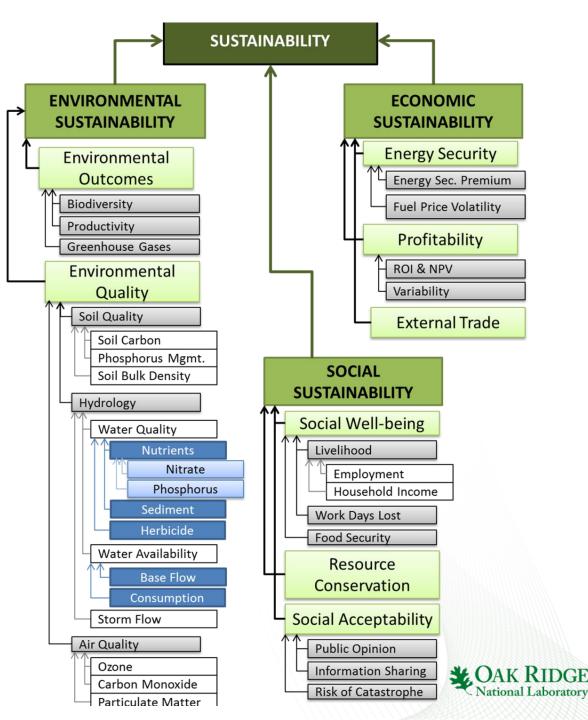
<u>Qualitative ratings</u> were developed for nearly all of the 35 sustainability indicators in all 12 categories.

Parish, ES, VH Dale, BE English, S Jackson, and D Tyler (2016) Assessing multimetric aspects of sustainability: Application to a bioenergy crop production system in East Tennessee. *Ecosphere7(2):1-18*

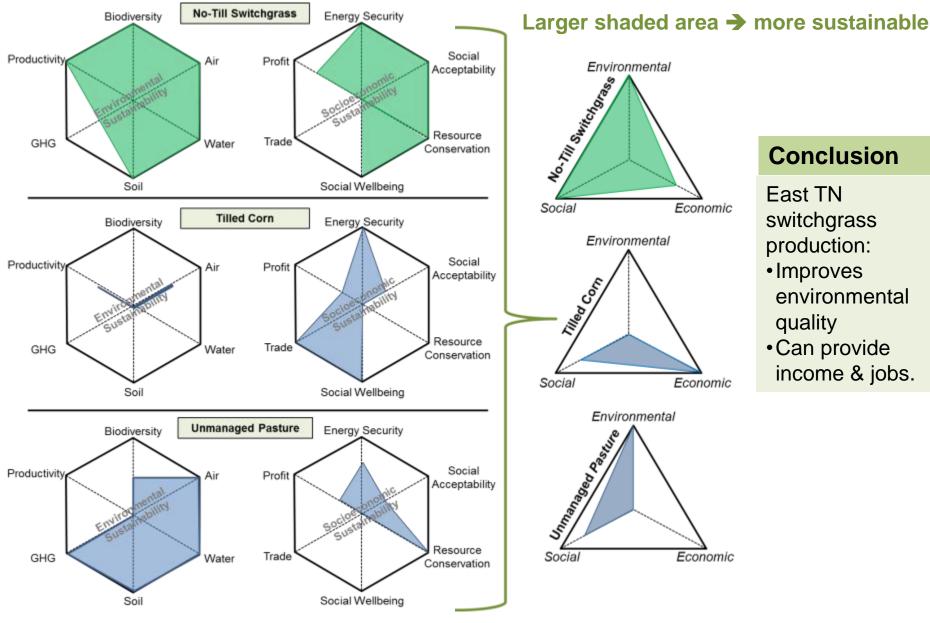
We compared 3 agricultural scenarios

Parameter	NO-TILL SWITCHGRASS	TILLED CORN	UNMANAGED PASTURE
Time of planting	Establish once in spring; no replanting	Plant annually	Already established
Tillage Type	No-till method with a drill is preferred	Planted conventionally	No need for replanting
Harvesting equipment	Conventional hay equipment	Combine	Harvest by cows (1.5 acres/cow)
Harvest Frequency	Once per year (after Nov. 1 or first killing frost)	Once a year (October)	Continuous
Storage	Round bale tarped	Trucked off farm	None
Herbicide	1-3 applications of glyphosate	Annual application of	No herbicide used
Application	herbicide prior to planting	glyphosate herbicide	
Fertilizer	Apply 40 lbs/acre when soil test is	Apply 100-160 lbs/acre	No fertilizer used
Application	"Low" for P and K	when soil test is "Medium"	
Typical Yield	6-8 tons/year after 3 rd year	114.5 bushels/acre (average for 2007-2013)	2.1 tons/acre (estimated as mixed hay)
Price information	\$450/acre actual contract price;	\$5.04/bushel	\$90.79/ton
	estimated delivered price= \$71.23/ton (\$3.25/ton storage)	(2007-2013 average)	(2007-2013 average)
Final Destination	50 million gallon/year Biorefinery within a one-hour's drive	Multiple uses of corn grain throughout the region	On-site cattle roughage
Parish ASA Nov2014		English, S Jackson, and D Tyler (20	16) Assessing multimetric aspects of

Parish, ES, VH Dale, BE English, S Jackson, and D Tyler (2016) Assessing multimetric aspects of sustainability: Application to a bioenergy crop production system in East Tennessee. *Ecosphere7(2):1-18*


We aggregated the indicators within a hierarchical

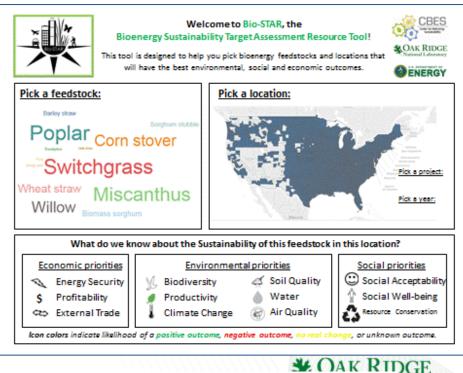
Multi-Attribute Decision Support System (MADSS)


built with freely available DEXi 4.0 software

Parish, ES, VH Dale, BE English, S Jackson, and D Tyler (2016) Assessing multimetric aspects of sustainability: Application to a bioenergy crop production system in East Tennessee. *Ecosphere7(2):1-18*

14 Parish_ASA_Nov2014

Case study aggregation of qualitative sustainability indicators



Parish et al. (2016) Ecosphere

Developing BioSTAR* tool to visualize progress toward sustainability

- Purpose: Helps users move from amorphous concept of "sustainability" to priority conditions that can be measured & monitored.
- **Process:** Develop & test visualization tool (starting with switchgrass case study)
 - Displays information about progress being made toward bioenergy sustainability
 - In a particular contexts
 - As defined by the users
 - As characterized by a suite of environmental, social & economic indicators
 - Mathematically robust
 - Allows consideration of tradeoffs
- Audience: Diversity of stakeholders: public, landowners, NGOs, industry, researchers, etc.
- Input from stakeholders: March 28, 2017 workshop

ratory

16 4.2.2.

*BioSTAR = Bioenergy Sustainability Target Assessment Resource

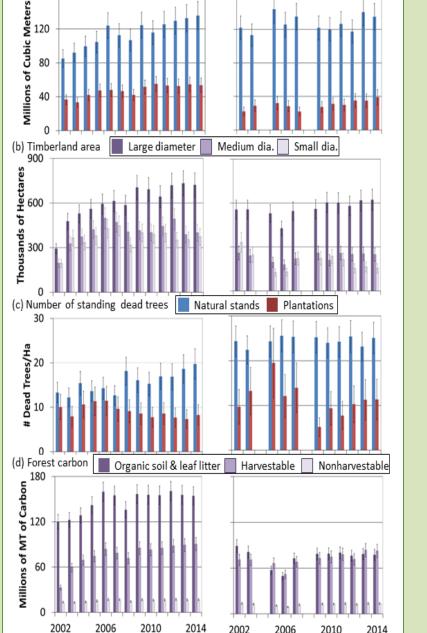
Quantitative case study of 2 fuelsheds exporting pellets:

- Savannah : mostly intensively managed pine plantations
- Chesapeake: both pine & mixed hardwoods

Chesapeake Fuelsheds: Counties within Fuelshed VIRGINA 120 km (75 miles) of pellet mills that supply ports NORTH CAROLINA SOUTH CAROLINA GEORGH Each fuelshed area has an area of ~ 12 million ha. Savannah Fuelshed Chesapeake Fuelshed: Legend Pellet Mills (as of September 2014) 33 NC counties Ports Exporting Pellets to Europe 69 VA counties Feedstock Availability FLORIDA (counties within 75 miles of pellet mills) U.S. Southeastern States Savannah Fuelshed: 22 SC counties 75 150 300 450 600 Kilometers 54 GA counties 200 50 100 300 400 Miles 7 FL counties

Dale et al. (2017) Forest Ecology & Mgmt

National Laboratory


US industrial wood pellet trade has been growing

From E. Parish, A. Herzberger, C. Phifer, and V. Dale (in press) Ecology & Society

Are pellet exports affecting SE US forests?

- Analyzed FIA data for changes in:
- timberland volume & area (natural vs. plantation)
- tree diameters
- # of standing dead trees
- carbon pools
- etc.

Chesapeake fuelshed

2010

2014

Plantations

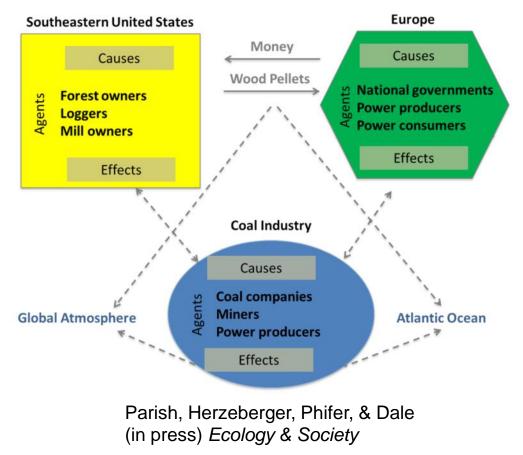
Savannah fuelshed

Natural stands

(a) Timberland volume

160

120


Figure 1 from V. Dale, E. Parish, K. Kline & E. Tobin (2017)

Telecoupling framework developed by Jack Liu* et al. improved our understanding of the sustainability of transatlantic wood pellet trade

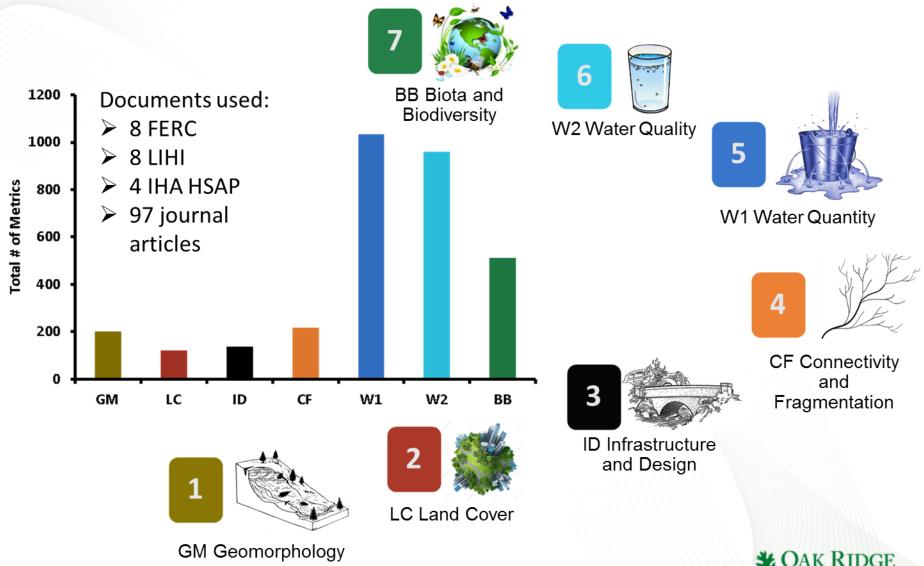
System can provide benefits for both SE US & Europe.

- Environmental benefits
 - <u>Enhanced management of SE US forests</u> using income from bioenergy products can benefit water quality, biodiversity, carbon sequestration, & forest productivity
 - <u>Reduction in</u>
 - Toxic air emissions related to coal combustion
 - $\circ \quad \text{GHG emissions from energy production}$
 - Air pollution due to reduced burning of woody debris
 - <u>Preservation</u> of EU forest land & associated ecosystem services
- Social economic benefits
 - Additional <u>market opportunity</u> for woody biomass helps SE US land remain in forest
 - <u>Avoided job losses in rural SE US &</u> increased jobs in Europe
 - <u>Reduced risk of wildfires</u> due to increased forest management

Telecoupled wood pellet trade system



*Jianguo ("Jack") Liu leads the "Center for Systems Integration and Sustainability" at Michigan State University


National Laboratory

ORNL approach for assessing progress toward sustainability

Dale, Kline, Parish (in preparation)

ORNL is using Sustainability Approach to develop a set of environmental metrics for <u>hydropower</u>

National Laboratory

Thank you! Questions?

CBES

Center for BioEnergy Sustainability

https://cbes.ornl.gov/

Publications and factsheets related to ORNL's Bioenergy Sustainability research

ACKNOWLEDGMENTS

Funding for a portion of this research was provided by the US Department of Energy (DOE) under the Bioenergy Technologies Office (BETO). Oak Ridge National Laboratory (ORNL) is managed by UT-Battelle, LLC, for DOE under contract DE-AC05-00OR22725. Co-authors include Virginia Dale & Keith Kline.