Genetic Improvement of Crop Water-Use Efficiency and Yield for Sustainable Production of Food and Biofuels on Degraded and Non-Arable Lands

Xiaohan Yang

Senior Staff Scientist

Biosciences Division, Oak Ridge National Laboratory

Oak Ridge, TN 37831

E-mail: yangx@ornl.gov

https://www.ornl.gov/staff-profile/xiaohan-yang

December 8, 2017

ORNL is managed by UT-Battelle for the US Department of Energy

Challenge and Solution

Challenge:

Competition for land and water between bioenergy and food production

Solution:

Genetic modification of existing crops or development of new crops for sustainable food and bioenergy production on marginal and non-arable land.

Global blue water scarcity

- Severe water scarcity: consumption exceeds availability
- Two-thirds of the global population (4.0 billion people) live with severe water scarcity at least 1 month of the year.
- Nearly half of those people live in India and China.
- Half a billion people face severe water scarcity all year round.

National Laboratory

Agriculture accounts for 70 percent of global water usage

- Globally, rice and wheat are the biggest drivers of water scarcity among food commodities.
- It is urgent to create water-use efficient and drought-resistant strains of key crops.

CAM photosynthesis is a natural solution to the water scarcity challenge

Yang et al. 2015. New Phytologist

Water-use efficient photosynthesis

Crassulacean acid metabolism (CAM) features CO2 uptake through open stomata (specialized pores in the leaves of plants) at night when temperature is lower and stomatal closure during the daytime when temperature is higher to reduce water loss caused by evaporation, CAM photosynthesis plants have much higher water-use efficiency than C3 or C4 photosynthesis plants.

Yamori et al. 2014. Photosyn Res

National Laboratory

Theoretical and incremental energy conversion efficiency

Davis et al. 2014. Journal of Experimental Botany

Comparison CAM, C₃ and C₄ crop yield

In arid conditions, yields of CAM plants can exceed those of C_3 and C_4 crops due to the greater water-use efficiency

Can C₃ photosynthesis be converted into CAM photosynthesis?

CAK RIDGE

Winter and Holtum 2014. J. Exp. Bot.

How to covert C₃ photosyn into CAM?

Answer: Accelerated convergent evolution

Viewpoints

A roadmap for research on crassulacean acid metabolism (CAM) to enhance sustainable food and bioenergy production in a hotter, drier world

Xiaohan Yang¹*, John C. Cushman², Anne M. Borland^{1,3}, Erika J. Edwards⁴, Stan D. Wullschleger⁵, Gerald A. Tuskan¹, Nick A. Owen⁶, Howard Griffiths⁶, J. Andrew C. Smith⁷, Henrique C. De Paoli¹, David J. Weston¹, Robert Cottingham¹, James Hartwell⁸, Sarah C. Davis⁹, Katia Silvera¹⁰, Ray Ming^{11,12}, Karen Schlauch¹³, Paul Abraham¹⁴, J. Ryan Stewart¹⁵, Hao-Bo Guo¹⁶, Rebecca Albion², Jungmin Ha², Sung Don Lim², Bernard W. M. Wone², Won Cheol Yim², Travis Garcia², Jesse A. Mayer², Juli Petereit¹³, Sujithkumar S. Nair⁵, Erin Casey³, Robert L. Hettich¹⁴, Johan Ceusters¹⁷, Priya Ranjan¹, Kaitlin J. Palla¹, Hengfu Yin¹⁸, Casandra Reyes-García¹⁹, José Luis Andrade¹⁹, Luciano Freschi²⁰, Juan D. Beltrán⁷, Louisa V. Dever⁸, Susanna F. Boxall⁸, Jade Waller⁸, Jack Davies⁸, Phaitun Bupphada⁸, Nirja Kadu⁸, Klaus Winter¹⁰, Rowan F. Sage²¹, Cristobal N. Aguilar²², Jeremy Schmutz^{23,24}, Jerry Jenkins²³ and Joseph A. M. Holtum²⁵

CAM research roadmap

Yang et al. 2015. New Phytologist 207: 491-504

Genes found in drought-resistant plants could accelerate evolution of water-use efficient crops

Altmetric: 128

More detail ≫

Article | OPEN

The *Kalanchoë* genome provides insights into convergent evolution and building blocks of crassulacean acid metabolism

Xiaohan Yang [™], Rongbin Hu, […] Gerald A. Tuskan

Nature Communications **8**, Article number: 1899 (2017) doi:10.1038/s41467-017-01491-7 Received: 12 January 2017 Accepted: 21 September 2017 Published online: 01 December 2017

Building blocks of CAM pathway

Kalanchoë fedtschenkoi

Agave americana

Strategy for engineering of CAM into C₃ plants

Genetic engineering of CAM photosynthesis in existing crops can increase water-use efficiency and biomass yield

Development of CAM plants (e.g., Agave and cactus) as new emerging crops has a great potential for bioenergy and food production on marginal and nonarable lands

Acknowledgements

Oak Ridge National Laboratory

Rongbin Hu, Hengfu Yin, Degao Liu, Deborah A. Weighill, Robert C. Moseley, Sara Jawdy, Zhihao Zhang, Meng Xie, Paul E. Abraham, Ritesh Mewalal, Kaitlin J. Palla, Henrique Cestari De Paoli, Jin-Gui Chen, Wellington Muchero, Daniel A. Jacobson, Timothy J. Tschaplinski, Robert L. Hettich, Gerald A. Tuskan

HudsonAlpha Institute for Biotechnology

Jerry Jenkins, Jane Grimwood

US Department of Energy Joint Genome Institute Shengqiang Shu, David M. Goodstein, Jeremy Schmutz

Fujian Agriculture and Forestry University, China Haibao Tang, Ray Ming

University of Nevada, Reno Won Cheol Yim, Jungmin Ha, Rebecca Albion, Travis Garcia, Jesse Mayer, Sung Don Lim, John Cushman

University of Georgia Karolina Heyduk, James H. Leebens-Mack

University of Tennessee, Knoxville Hao-Bo Guo, Hong Guo

Northern Illinois University Elisabeth Fitzek, Yanbin Yin **University of Liverpool, UK** James Hartwell, Susanna F. Boxall, Louisa V. Dever

University of Oxford, UK Juan D. Beltrán, J. Andrew C. Smith

University of Illinois at Urbana-Champaign Ching Man Wai

Pacific Biosciences, Inc. Paul Peluso

Michigan State University Robert Van Buren

Newcastle University, UK Anne M. Borland

Smithsonian Tropical Research InstituteRepublic of Panama Klaus Winter

Office of Science Genomic Science Program

